Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Row Sampling (1604.05448v1)

Published 19 Apr 2016 in cs.DS

Abstract: Finding a small spectral approximation for a tall $n \times d$ matrix $A$ is a fundamental numerical primitive. For a number of reasons, one often seeks an approximation whose rows are sampled from those of $A$. Row sampling improves interpretability, saves space when $A$ is sparse, and preserves row structure, which is especially important, for example, when $A$ represents a graph. However, correctly sampling rows from $A$ can be costly when the matrix is large and cannot be stored and processed in memory. Hence, a number of recent publications focus on row sampling in the streaming setting, using little more space than what is required to store the outputted approximation [KL13, KLM+14]. Inspired by a growing body of work on online algorithms for machine learning and data analysis, we extend this work to a more restrictive online setting: we read rows of $A$ one by one and immediately decide whether each row should be kept in the spectral approximation or discarded, without ever retracting these decisions. We present an extremely simple algorithm that approximates $A$ up to multiplicative error $\epsilon$ and additive error $\delta$ using $O(d \log d \log(\epsilon||A||_2/\delta)/\epsilon2)$ online samples, with memory overhead proportional to the cost of storing the spectral approximation. We also present an algorithm that uses $O(d2$) memory but only requires $O(d\log(\epsilon||A||_2/\delta)/\epsilon2)$ samples, which we show is optimal. Our methods are clean and intuitive, allow for lower memory usage than prior work, and expose new theoretical properties of leverage score based matrix approximation.

Citations (62)

Summary

We haven't generated a summary for this paper yet.