Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online Row Sampling (1604.05448v1)

Published 19 Apr 2016 in cs.DS

Abstract: Finding a small spectral approximation for a tall $n \times d$ matrix $A$ is a fundamental numerical primitive. For a number of reasons, one often seeks an approximation whose rows are sampled from those of $A$. Row sampling improves interpretability, saves space when $A$ is sparse, and preserves row structure, which is especially important, for example, when $A$ represents a graph. However, correctly sampling rows from $A$ can be costly when the matrix is large and cannot be stored and processed in memory. Hence, a number of recent publications focus on row sampling in the streaming setting, using little more space than what is required to store the outputted approximation [KL13, KLM+14]. Inspired by a growing body of work on online algorithms for machine learning and data analysis, we extend this work to a more restrictive online setting: we read rows of $A$ one by one and immediately decide whether each row should be kept in the spectral approximation or discarded, without ever retracting these decisions. We present an extremely simple algorithm that approximates $A$ up to multiplicative error $\epsilon$ and additive error $\delta$ using $O(d \log d \log(\epsilon||A||_2/\delta)/\epsilon2)$ online samples, with memory overhead proportional to the cost of storing the spectral approximation. We also present an algorithm that uses $O(d2$) memory but only requires $O(d\log(\epsilon||A||_2/\delta)/\epsilon2)$ samples, which we show is optimal. Our methods are clean and intuitive, allow for lower memory usage than prior work, and expose new theoretical properties of leverage score based matrix approximation.

Citations (62)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.