Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Pixel-level Encoding and Depth Layering for Instance-level Semantic Labeling (1604.05096v2)

Published 18 Apr 2016 in cs.CV

Abstract: Recent approaches for instance-aware semantic labeling have augmented convolutional neural networks (CNNs) with complex multi-task architectures or computationally expensive graphical models. We present a method that leverages a fully convolutional network (FCN) to predict semantic labels, depth and an instance-based encoding using each pixel's direction towards its corresponding instance center. Subsequently, we apply low-level computer vision techniques to generate state-of-the-art instance segmentation on the street scene datasets KITTI and Cityscapes. Our approach outperforms existing works by a large margin and can additionally predict absolute distances of individual instances from a monocular image as well as a pixel-level semantic labeling.

Citations (172)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com