Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Band-independent Variable Step Size Proportionate Normalized Subband Adaptive Filter Algorithm (1604.04999v2)

Published 18 Apr 2016 in cs.SY

Abstract: Proportionate-type normalized suband adaptive filter (PNSAF-type) algorithms are very attractive choices for echo cancellation. To further obtain both fast convergence rate and low steady-state error, in this paper, a variable step size (VSS) version of the presented improved PNSAF (IPNSAF) algorithm is proposed by minimizing the square of the noise-free a posterior subband error signals. A noniterative shrinkage method is used to recover the noise-free a priori subband error signals from the noisy subband error signals. Significantly, the proposed VSS strategy can be applied to any other PNSAF-type algorithm, since it is independent of the proportionate principles. Simulation results in the context of acoustic echo cancellation have demonstrated the effectiveness of the proposed method.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.