Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Unified, Hardware-Fitted, Cross-GPU Performance Model (1604.04997v1)

Published 18 Apr 2016 in cs.PF and cs.DC

Abstract: We present a mechanism to symbolically gather performance-relevant operation counts from numerically-oriented subprograms (kernels') expressed in the Loopy programming system, and apply these counts in a simple, linear model of kernel run time. We use a series ofperformance-instructive' kernels to fit the parameters of a unified model to the performance characteristics of GPU hardware from multiple hardware generations and vendors. We evaluate the predictive power of the model on a broad array of computational kernels relevant to scientific computing. In terms of the geometric mean, our simple, vendor- and GPU-type-independent model achieves relative accuracy comparable to that of previously published work using hardware specific models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.