Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Learning to Incentivize: Eliciting Effort via Output Agreement (1604.04928v1)

Published 17 Apr 2016 in cs.GT, cs.AI, and cs.HC

Abstract: In crowdsourcing when there is a lack of verification for contributed answers, output agreement mechanisms are often used to incentivize participants to provide truthful answers when the correct answer is hold by the majority. In this paper, we focus on using output agreement mechanisms to elicit effort, in addition to eliciting truthful answers, from a population of workers. We consider a setting where workers have heterogeneous cost of effort exertion and examine the data requester's problem of deciding the reward level in output agreement for optimal elicitation. In particular, when the requester knows the cost distribution, we derive the optimal reward level for output agreement mechanisms. This is achieved by first characterizing Bayesian Nash equilibria of output agreement mechanisms for a given reward level. When the requester does not know the cost distribution, we develop sequential mechanisms that combine learning the cost distribution with incentivizing effort exertion to approximately determine the optimal reward level.

Citations (51)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)