Estimation of low rank density matrices: bounds in Schatten norms and other distances (1604.04600v1)
Abstract: Let ${\mathcal S}m$ be the set of all $m\times m$ density matrices (Hermitian positively semi-definite matrices of unit trace). Consider a problem of estimation of an unknown density matrix $\rho\in {\mathcal S}_m$ based on outcomes of $n$ measurements of observables $X_1,\dots, X_n\in {\mathbb H}_m$ (${\mathbb H}_m$ being the space of $m\times m$ Hermitian matrices) for a quantum system identically prepared $n$ times in state $\rho.$ Outcomes $Y_1,\dots, Y_n$ of such measurements could be described by a trace regression model in which ${\mathbb E}{\rho}(Y_j|X_j)={\rm tr}(\rho X_j), j=1,\dots, n.$ The design variables $X_1,\dots, X_n$ are often sampled at random from the uniform distribution in an orthonormal basis ${E_1,\dots, E_{m2}}$ of ${\mathbb H}m$ (such as Pauli basis). The goal is to estimate the unknown density matrix $\rho$ based on the data $(X_1,Y_1), \dots, (X_n,Y_n).$ Let $$ \hat Z:=\frac{m2}{n}\sum{j=1}n Y_j X_j $$ and let $\check \rho$ be the projection of $\hat Z$ onto the convex set ${\mathcal S}_m$ of density matrices. It is shown that for estimator $\check \rho$ the minimax lower bounds in classes of low rank density matrices (established earlier) are attained up logarithmic factors for all Schatten $p$-norm distances, $p\in [1,\infty]$ and for Bures version of quantum Hellinger distance. Moreover, for a slightly modified version of estimator $\check \rho$ the same property holds also for quantum relative entropy (Kullback-Leibler) distance between density matrices.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.