Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fundamental Limits of Coded Caching: Improved Delivery Rate-Cache Capacity Trade-off (1604.03888v2)

Published 13 Apr 2016 in cs.IT and math.IT

Abstract: A centralized coded caching system, consisting of a server delivering N popular files, each of size F bits, to K users through an error-free shared link, is considered. It is assumed that each user is equipped with a local cache memory with capacity MF bits, and contents can be proactively cached into these caches over a low traffic period; however, without the knowledge of the user demands. During the peak traffic period each user requests a single file from the server. The goal is to minimize the number of bits delivered by the server over the shared link, known as the delivery rate, over all user demand combinations. A novel coded caching scheme for the cache capacity of M= (N-1)/K is proposed. It is shown that the proposed scheme achieves a smaller delivery rate than the existing coded caching schemes in the literature when K > N >= 3. Furthermore, we argue that the delivery rate of the proposed scheme is within a constant multiplicative factor of 2 of the optimal delivery rate for cache capacities 1/K <= M <= (N-1)/K, when K > N >= 3.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.