Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Effect of Distortions on the Prediction of Visual Attention (1604.03882v1)

Published 13 Apr 2016 in cs.CV

Abstract: Existing saliency models have been designed and evaluated for predicting the saliency in distortion-free images. However, in practice, the image quality is affected by a host of factors at several stages of the image processing pipeline such as acquisition, compression and transmission. Several studies have explored the effect of distortion on human visual attention; however, none of them have considered the performance of visual saliency models in the presence of distortion. Furthermore, given that one potential application of visual saliency prediction is to aid pooling of objective visual quality metrics, it is important to compare the performance of existing saliency models on distorted images. In this paper, we evaluate several state-of-the-art visual attention models over different databases consisting of distorted images with various types of distortions such as blur, noise and compression with varying levels of distortion severity. This paper also introduces new improved performance evaluation metrics that are shown to overcome shortcomings in existing performance metrics. We find that the performance of most models improves with moderate and high levels of distortions as compared to the near distortion-free case. In addition, model performance is also found to decrease with an increase in image complexity.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube