Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Community Detection with Node Attributes and its Generalization (1604.03601v1)

Published 12 Apr 2016 in cs.SI, physics.soc-ph, and stat.ML

Abstract: Community detection algorithms are fundamental tools to understand organizational principles in social networks. With the increasing power of social media platforms, when detecting communities there are two possi- ble sources of information one can use: the structure of social network and node attributes. However structure of social networks and node attributes are often interpreted separately in the research of community detection. When these two sources are interpreted simultaneously, one common as- sumption shared by previous studies is that nodes attributes are correlated with communities. In this paper, we present a model that is capable of combining topology information and nodes attributes information with- out assuming correlation. This new model can recover communities with higher accuracy even when node attributes and communities are uncorre- lated. We derive the detectability threshold for this model and use Belief Propagation (BP) to make inference. This algorithm is optimal in the sense that it can recover community all the way down to the threshold. This new model is also with the potential to handle edge content and dynamic settings.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube