Papers
Topics
Authors
Recent
2000 character limit reached

Asynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization (1604.03584v4)

Published 12 Apr 2016 in cs.LG and math.OC

Abstract: We provide the first theoretical analysis on the convergence rate of the asynchronous stochastic variance reduced gradient (SVRG) descent algorithm on non-convex optimization. Recent studies have shown that the asynchronous stochastic gradient descent (SGD) based algorithms with variance reduction converge with a linear convergent rate on convex problems. However, there is no work to analyze asynchronous SGD with variance reduction technique on non-convex problem. In this paper, we study two asynchronous parallel implementations of SVRG: one is on a distributed memory system and the other is on a shared memory system. We provide the theoretical analysis that both algorithms can obtain a convergence rate of $O(1/T)$, and linear speed up is achievable if the number of workers is upper bounded. V1,v2,v3 have been withdrawn due to reference issue, please refer the newest version v4.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.