Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Symbolic Knowledge Extraction using Łukasiewicz Logics (1604.03099v1)

Published 11 Apr 2016 in cs.AI and cs.LG

Abstract: This work describes a methodology that combines logic-based systems and connectionist systems. Our approach uses finite truth-valued {\L}ukasiewicz logic, wherein every connective can be defined by a neuron in an artificial network. This allowed the injection of first-order formulas into a network architecture, and also simplified symbolic rule extraction. For that we trained a neural networks using the Levenderg-Marquardt algorithm, where we restricted the knowledge dissemination in the network structure. This procedure reduces neural network plasticity without drastically damaging the learning performance, thus making the descriptive power of produced neural networks similar to the descriptive power of {\L}ukasiewicz logic language and simplifying the translation between symbolic and connectionist structures. We used this method for reverse engineering truth table and in extraction of formulas from real data sets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.