Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Amortized Dynamic Cell-Probe Lower Bounds from Four-Party Communication (1604.03030v1)

Published 11 Apr 2016 in cs.DS

Abstract: This paper develops a new technique for proving amortized, randomized cell-probe lower bounds on dynamic data structure problems. We introduce a new randomized nondeterministic four-party communication model that enables "accelerated", error-preserving simulations of dynamic data structures. We use this technique to prove an $\Omega(n(\log n/\log\log n)2)$ cell-probe lower bound for the dynamic 2D weighted orthogonal range counting problem (2D-ORC) with $n/\mathrm{poly}\log n$ updates and $n$ queries, that holds even for data structures with $\exp(-\tilde{\Omega}(n))$ success probability. This result not only proves the highest amortized lower bound to date, but is also tight in the strongest possible sense, as a matching upper bound can be obtained by a deterministic data structure with worst-case operational time. This is the first demonstration of a "sharp threshold" phenomenon for dynamic data structures. Our broader motivation is that cell-probe lower bounds for exponentially small success facilitate reductions from dynamic to static data structures. As a proof-of-concept, we show that a slightly strengthened version of our lower bound would imply an $\Omega((\log n /\log\log n)2)$ lower bound for the static 3D-ORC problem with $O(n\log{O(1)}n)$ space. Such result would give a near quadratic improvement over the highest known static cell-probe lower bound, and break the long standing $\Omega(\log n)$ barrier for static data structures.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.