Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximating Nash Equilibria in Tree Polymatrix Games (1604.02676v1)

Published 10 Apr 2016 in cs.GT

Abstract: We develop a quasi-polynomial time Las Vegas algorithm for approximating Nash equilibria in polymatrix games over trees, under a mild renormalizing assumption. Our result, in particular, leads to an expected polynomial-time algorithm for computing approximate Nash equilibria of tree polymatrix games in which the number of actions per player is a fixed constant. Further, for trees with constant degree, the running time of the algorithm matches the best known upper bound for approximating Nash equilibria in bimatrix games (Lipton, Markakis, and Mehta 2003). Notably, this work closely complements the hardness result of Rubinstein (2015), which establishes the inapproximability of Nash equilibria in polymatrix games over constant-degree bipartite graphs with two actions per player.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube