Papers
Topics
Authors
Recent
2000 character limit reached

Scene-driven Retrieval in Edited Videos using Aesthetic and Semantic Deep Features (1604.02546v1)

Published 9 Apr 2016 in cs.CV, cs.IR, and cs.MM

Abstract: This paper presents a novel retrieval pipeline for video collections, which aims to retrieve the most significant parts of an edited video for a given query, and represent them with thumbnails which are at the same time semantically meaningful and aesthetically remarkable. Videos are first segmented into coherent and story-telling scenes, then a retrieval algorithm based on deep learning is proposed to retrieve the most significant scenes for a textual query. A ranking strategy based on deep features is finally used to tackle the problem of visualizing the best thumbnail. Qualitative and quantitative experiments are conducted on a collection of edited videos to demonstrate the effectiveness of our approach.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.