Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Salesman's Improved Paths: 3/2+1/34 Integrality Gap and Approximation Ratio (1604.02486v2)

Published 8 Apr 2016 in cs.DM, cs.DS, and math.CO

Abstract: We give a new, strongly polynomial-time algorithm and improved analysis for the metric $s-t$ path TSP. It finds a tour of cost less than 1.53 times the optimum of the subtour elimination LP, while known examples show that 1.5 is a lower bound for the integrality gap. A key new idea is the deletion of some edges of Christofides' trees, which is then accompanied by novel arguments of the analysis: edge-deletion disconnects the trees, which are then partly reconnected by parity correction'. We show that the arisingconnectivity correction' can be achieved for a minor extra cost. On the one hand this algorithm and analysis extend previous tools such as the best-of-many Christofides algorithm. On the other hand, powerful new tools are solicited, such as a flow problem for analyzing the reconnection cost, and the construction of a set of more and more restrictive spanning trees, each of which can still be found by the greedy algorithm. We show that these trees can replace the convex combination of spanning trees in the best-of-may Christofides algorithm. These new methods lead to improving the integrality ratio and approximation guarantee below 1.53, as it is already sketched in the preliminary shortened version of this article that appeared in FOCS 2016. The algorithm and analysis have been significantly simplified in the current article, and details of proofs and explanations have been added.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. András Sebő (16 papers)
  2. Anke van Zuylen (11 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.