Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Performance Limits for Noisy Multi-Measurement Vector Problems (1604.02475v2)

Published 8 Apr 2016 in cs.IT, cs.DC, and math.IT

Abstract: Compressed sensing (CS) demonstrates that sparse signals can be estimated from under-determined linear systems. Distributed CS (DCS) further reduces the number of measurements by considering joint sparsity within signal ensembles. DCS with jointly sparse signals has applications in multi-sensor acoustic sensing, magnetic resonance imaging with multiple coils, remote sensing, and array signal processing. Multi-measurement vector (MMV) problems consider the estimation of jointly sparse signals under the DCS framework. Two related MMV settings are studied. In the first setting, each signal vector is measured by a different independent and identically distributed (i.i.d.) measurement matrix, while in the second setting, all signal vectors are measured by the same i.i.d. matrix. Replica analysis is performed for these two MMV settings, and the minimum mean squared error (MMSE), which turns out to be identical for both settings, is obtained as a function of the noise variance and number of measurements. To showcase the application of MMV models, the MMSE's of complex CS problems with both real and complex measurement matrices are also analyzed. Multiple performance regions for MMV are identified where the MMSE behaves differently as a function of the noise variance and the number of measurements. Belief propagation (BP) is a CS signal estimation framework that often achieves the MMSE asymptotically. A phase transition for BP is identified. This phase transition, verified by numerical results, separates the regions where BP achieves the MMSE and where it is suboptimal. Numerical results also illustrate that more signal vectors in the jointly sparse signal ensemble lead to a better phase transition.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube