Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Neighbourhood Component Analysis (1604.02354v1)

Published 8 Apr 2016 in cs.CV and cs.LG

Abstract: Learning a good distance metric in feature space potentially improves the performance of the KNN classifier and is useful in many real-world applications. Many metric learning algorithms are however based on the point estimation of a quadratic optimization problem, which is time-consuming, susceptible to overfitting, and lack a natural mechanism to reason with parameter uncertainty, an important property useful especially when the training set is small and/or noisy. To deal with these issues, we present a novel Bayesian metric learning method, called Bayesian NCA, based on the well-known Neighbourhood Component Analysis method, in which the metric posterior is characterized by the local label consistency constraints of observations, encoded with a similarity graph instead of independent pairwise constraints. For efficient Bayesian optimization, we explore the variational lower bound over the log-likelihood of the original NCA objective. Experiments on several publicly available datasets demonstrate that the proposed method is able to learn robust metric measures from small size dataset and/or from challenging training set with labels contaminated by errors. The proposed method is also shown to outperform a previous pairwise constrained Bayesian metric learning method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)