Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RIGA at SemEval-2016 Task 8: Impact of Smatch Extensions and Character-Level Neural Translation on AMR Parsing Accuracy (1604.01278v1)

Published 5 Apr 2016 in cs.CL

Abstract: Two extensions to the AMR smatch scoring script are presented. The first extension com-bines the smatch scoring script with the C6.0 rule-based classifier to produce a human-readable report on the error patterns frequency observed in the scored AMR graphs. This first extension results in 4% gain over the state-of-art CAMR baseline parser by adding to it a manually crafted wrapper fixing the identified CAMR parser errors. The second extension combines a per-sentence smatch with an en-semble method for selecting the best AMR graph among the set of AMR graphs for the same sentence. This second modification au-tomatically yields further 0.4% gain when ap-plied to outputs of two nondeterministic AMR parsers: a CAMR+wrapper parser and a novel character-level neural translation AMR parser. For AMR parsing task the character-level neural translation attains surprising 7% gain over the carefully optimized word-level neural translation. Overall, we achieve smatch F1=62% on the SemEval-2016 official scor-ing set and F1=67% on the LDC2015E86 test set.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube