Distinguishing between Personal Preferences and Social Influence in Online Activity Feeds (1604.01105v1)
Abstract: Many online social networks thrive on automatic sharing of friends' activities to a user through activity feeds, which may influence the user's next actions. However, identifying such social influence is tricky because these activities are simultaneously impacted by influence and homophily. We propose a statistical procedure that uses commonly available network and observational data about people's actions to estimate the extent of copy-influence---mimicking others' actions that appear in a feed. We assume that non-friends don't influence users; thus, comparing how a user's activity correlates with friends versus non-friends who have similar preferences can help tease out the effect of copy-influence. Experiments on datasets from multiple social networks show that estimates that don't account for homophily overestimate copy-influence by varying, often large amounts. Further, copy-influence estimates fall below 1% of total actions in all networks: most people, and almost all actions, are not affected by the feed. Our results question common perceptions around the extent of copy-influence in online social networks and suggest improvements to diffusion and recommendation models.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.