Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Geometrically Tempered Hamiltonian Monte Carlo (1604.00872v2)

Published 4 Apr 2016 in stat.CO

Abstract: Hamiltonian Monte Carlo (HMC) has become routinely used for sampling from posterior distributions. Its extension Riemann manifold HMC (RMHMC) modifies the proposal kernel through distortion of local distances by a Riemannian metric. The performance depends critically on the choice of metric, with the Fisher information providing the standard choice. In this article, we propose a new class of metrics aimed at improving HMC's performance on multi-modal target distributions. We refer to the proposed approach as geometrically tempered HMC (GTHMC) due to its connection to other tempering methods. We establish a geometric theory behind RMHMC to motivate GTHMC and characterize its theoretical properties. Moreover, we develop a novel variable step size integrator for simulating Hamiltonian dynamics to improve on the usual St\"{o}rmer-Verlet integrator which suffers from numerical instability in GTHMC settings. We illustrate GTHMC through simulations, demonstrating generality and substantial gains over standard HMC implementations in terms of effective sample sizes.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.