Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decomposing Linearly Constrained Nonconvex Problems by a Proximal Primal Dual Approach: Algorithms, Convergence, and Applications (1604.00543v1)

Published 2 Apr 2016 in math.OC, cs.IT, and math.IT

Abstract: In this paper, we propose a new decomposition approach named the proximal primal dual algorithm (Prox-PDA) for smooth nonconvex linearly constrained optimization problems. The proposed approach is primal-dual based, where the primal step minimizes certain approximation of the augmented Lagrangian of the problem, and the dual step performs an approximate dual ascent. The approximation used in the primal step is able to decompose the variable blocks, making it possible to obtain simple subproblems by leveraging the problem structures. Theoretically, we show that whenever the penalty parameter in the augmented Lagrangian is larger than a given threshold, the Prox-PDA converges to the set of stationary solutions, globally and in a sublinear manner (i.e., certain measure of stationarity decreases in the rate of $\mathcal{O}(1/r)$, where $r$ is the iteration counter). Interestingly, when applying a variant of the Prox-PDA to the problem of distributed nonconvex optimization (over a connected undirected graph), the resulting algorithm coincides with the popular EXTRA algorithm [Shi et al 2014], which is only known to work in convex cases. Our analysis implies that EXTRA and its variants converge globally sublinearly to stationary solutions of certain nonconvex distributed optimization problem. There are many possible extensions of the Prox-PDA, and we present one particular extension to certain nonconvex distributed matrix factorization problem.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)