Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

To Fall Or Not To Fall: A Visual Approach to Physical Stability Prediction (1604.00066v1)

Published 31 Mar 2016 in cs.CV, cs.AI, and cs.RO

Abstract: Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel object and their configurations. Developmental psychology has shown that such skills are acquired by infants from observations at a very early stage. In this paper, we contrast a more traditional approach of taking a model-based route with explicit 3D representations and physical simulation by an end-to-end approach that directly predicts stability and related quantities from appearance. We ask the question if and to what extent and quality such a skill can directly be acquired in a data-driven way bypassing the need for an explicit simulation. We present a learning-based approach based on simulated data that predicts stability of towers comprised of wooden blocks under different conditions and quantities related to the potential fall of the towers. The evaluation is carried out on synthetic data and compared to human judgments on the same stimuli.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.