Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Object Boundary Guided Semantic Segmentation (1603.09742v4)

Published 31 Mar 2016 in cs.CV

Abstract: Semantic segmentation is critical to image content understanding and object localization. Recent development in fully-convolutional neural network (FCN) has enabled accurate pixel-level labeling. One issue in previous works is that the FCN based method does not exploit the object boundary information to delineate segmentation details since the object boundary label is ignored in the network training. To tackle this problem, we introduce a double branch fully convolutional neural network, which separates the learning of the desirable semantic class labeling with mask-level object proposals guided by relabeled boundaries. This network, called object boundary guided FCN (OBG-FCN), is able to integrate the distinct properties of object shape and class features elegantly in a fully convolutional way with a designed masking architecture. We conduct experiments on the PASCAL VOC segmentation benchmark, and show that the end-to-end trainable OBG-FCN system offers great improvement in optimizing the target semantic segmentation quality.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.