Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

System Combination for Short Utterance Speaker Recognition (1603.09460v2)

Published 31 Mar 2016 in cs.CL and cs.NE

Abstract: For text-independent short-utterance speaker recognition (SUSR), the performance often degrades dramatically. This paper presents a combination approach to the SUSR tasks with two phonetic-aware systems: one is the DNN-based i-vector system and the other is our recently proposed subregion-based GMM-UBM system. The former employs phone posteriors to construct an i-vector model in which the shared statistics offers stronger robustness against limited test data, while the latter establishes a phone-dependent GMM-UBM system which represents speaker characteristics with more details. A score-level fusion is implemented to integrate the respective advantages from the two systems. Experimental results show that for the text-independent SUSR task, both the DNN-based i-vector system and the subregion-based GMM-UBM system outperform their respective baselines, and the score-level system combination delivers performance improvement.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.