Papers
Topics
Authors
Recent
2000 character limit reached

Riemannian game dynamics (1603.09173v3)

Published 30 Mar 2016 in math.OC, cs.GT, and math.DS

Abstract: We study a class of evolutionary game dynamics defined by balancing a gain determined by the game's payoffs against a cost of motion that captures the difficulty with which the population moves between states. Costs of motion are represented by a Riemannian metric, i.e., a state-dependent inner product on the set of population states. The replicator dynamics and the (Euclidean) projection dynamics are the archetypal examples of the class we study. Like these representative dynamics, all Riemannian game dynamics satisfy certain basic desiderata, including positive correlation and global convergence in potential games. Moreover, when the underlying Riemannian metric satisfies a Hessian integrability condition, the resulting dynamics preserve many further properties of the replicator and projection dynamics. We examine the close connections between Hessian game dynamics and reinforcement learning in normal form games, extending and elucidating a well-known link between the replicator dynamics and exponential reinforcement learning.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.