Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Local Search Yields a PTAS for k-Means in Doubling Metrics (1603.08976v2)

Published 29 Mar 2016 in cs.DS, cs.AI, and cs.CG

Abstract: The most well known and ubiquitous clustering problem encountered in nearly every branch of science is undoubtedly $k$-means: given a set of data points and a parameter $k$, select $k$ centres and partition the data points into $k$ clusters around these centres so that the sum of squares of distances of the points to their cluster centre is minimized. Typically these data points lie $\mathbb{R}d$ for some $d\geq 2$. $k$-means and the first algorithms for it were introduced in the 1950's. Since then, hundreds of papers have studied this problem and many algorithms have been proposed for it. The most commonly used algorithm is known as Lloyd-Forgy, which is also referred to as "the" $k$-means algorithm, and various extensions of it often work very well in practice. However, they may produce solutions whose cost is arbitrarily large compared to the optimum solution. Kanungo et al. [2004] analyzed a simple local search heuristic to get a polynomial-time algorithm with approximation ratio $9+\epsilon$ for any fixed $\epsilon>0$ for $k$-means in Euclidean space. Finding an algorithm with a better approximation guarantee has remained one of the biggest open questions in this area, in particular whether one can get a true PTAS for fixed dimension Euclidean space. We settle this problem by showing that a simple local search algorithm provides a PTAS for $k$-means in $\mathbb{R}d$ for any fixed $d$. More precisely, for any error parameter $\epsilon>0$, the local search algorithm that considers swaps of up to $\rho=d{O(d)}\cdot{\epsilon}{-O(d/\epsilon)}$ centres at a time finds a solution using exactly $k$ centres whose cost is at most a $(1+\epsilon)$-factor greater than the optimum. Finally, we provide the first demonstration that local search yields a PTAS for the uncapacitated facility location problem and $k$-median with non-uniform opening costs in doubling metrics.

Citations (125)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.