Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mathematical Harmony Analysis (1603.08904v4)

Published 29 Mar 2016 in cs.SD

Abstract: Musical chords, harmonies or melodies in Just Intonation have note frequencies which are described by a base frequency multiplied by rational numbers. For any local section, these notes can be converted to some base frequency multiplied by whole positive numbers. The structure of the chord can be analysed mathematically by finding functions which are unchanged upon chord transposition. These functions are are denoted invariant, and are important for understanding the structure of harmony. Each chord described by whole numbers has a greatest common divisor, GCD, and a lowest common multiple, LCM. The ratio of these is denoted Complexity which is a positive whole number. The set of divisors of Complexity give a subset of a p limit tone lattice and have both a natural ordering and a multiplicative structure. The position and orientation of the original chord, on the ordered set or on the lattice, give rise to many other invariant functions including measures for otonality and utonality. Other invariant functions can be constructed from: ratios between note pairs, prime projections, weighted chords which incorporate loudness. Given a set of conditions described by invariant functions, algorithms can be developed to find all scales or chords meeting those conditions, allowing the classification of consonant harmonies up to specified limits.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)