Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generic Inverted Index Framework for Similarity Search on the GPU - Technical Report (1603.08390v3)

Published 28 Mar 2016 in cs.DB, cs.CV, cs.DC, and cs.DS

Abstract: We propose a novel generic inverted index framework on the GPU (called GENIE), aiming to reduce the programming complexity of the GPU for parallel similarity search of different data types. Not every data type and similarity measure are supported by GENIE, but many popular ones are. We present the system design of GENIE, and demonstrate similarity search with GENIE on several data types along with a theoretical analysis of search results. A new concept of locality sensitive hashing (LSH) named $\tau$-ANN search, and a novel data structure c-PQ on the GPU are also proposed for achieving this purpose. Extensive experiments on different real-life datasets demonstrate the efficiency and effectiveness of our framework. The implemented system has been released as open source.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub