Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Experimental Analysis of Algorithms for Coflow Scheduling (1603.07981v1)

Published 25 Mar 2016 in cs.NI and cs.DS

Abstract: Modern data centers face new scheduling challenges in optimizing job-level performance objectives, where a significant challenge is the scheduling of highly parallel data flows with a common performance goal (e.g., the shuffle operations in MapReduce applications). Chowdhury and Stoica introduced the coflow abstraction to capture these parallel communication patterns, and Chowdhury et al. proposed effective heuristics to schedule coflows efficiently. In our previous paper, we considered the strongly NP-hard problem of minimizing the total weighted completion time of coflows with release dates, and developed the first polynomial-time scheduling algorithms with O(1)-approximation ratios. In this paper, we carry out a comprehensive experimental analysis on a Facebook trace and extensive simulated instances to evaluate the practical performance of several algorithms for coflow scheduling, including the approximation algorithms developed in our previous paper. Our experiments suggest that simple algorithms provide effective approximations of the optimal, and that the performance of our approximation algorithms is relatively robust, near optimal, and always among the best compared with the other algorithms, in both the offline and online settings.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.