Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Joint Projection and Dictionary Learning using Low-rank Regularization and Graph Constraints (1603.07697v2)

Published 24 Mar 2016 in cs.CV

Abstract: In this paper, we aim at learning simultaneously a discriminative dictionary and a robust projection matrix from noisy data. The joint learning, makes the learned projection and dictionary a better fit for each other, so a more accurate classification can be obtained. However, current prevailing joint dimensionality reduction and dictionary learning methods, would fail when the training samples are noisy or heavily corrupted. To address this issue, we propose a joint projection and dictionary learning using low-rank regularization and graph constraints (JPDL-LR). Specifically, the discrimination of the dictionary is achieved by imposing Fisher criterion on the coding coefficients. In addition, our method explicitly encodes the local structure of data by incorporating a graph regularization term, that further improves the discriminative ability of the projection matrix. Inspired by recent advances of low-rank representation for removing outliers and noise, we enforce a low-rank constraint on sub-dictionaries of all classes to make them more compact and robust to noise. Experimental results on several benchmark datasets verify the effectiveness and robustness of our method for both dimensionality reduction and image classification, especially when the data contains considerable noise or variations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.