Papers
Topics
Authors
Recent
2000 character limit reached

Learning Mixtures of Plackett-Luce Models (1603.07323v4)

Published 23 Mar 2016 in cs.LG

Abstract: In this paper we address the identifiability and efficient learning problems of finite mixtures of Plackett-Luce models for rank data. We prove that for any $k\geq 2$, the mixture of $k$ Plackett-Luce models for no more than $2k-1$ alternatives is non-identifiable and this bound is tight for $k=2$. For generic identifiability, we prove that the mixture of $k$ Plackett-Luce models over $m$ alternatives is generically identifiable if $k\leq\lfloor\frac {m-2} 2\rfloor!$. We also propose an efficient generalized method of moments (GMM) algorithm to learn the mixture of two Plackett-Luce models and show that the algorithm is consistent. Our experiments show that our GMM algorithm is significantly faster than the EMM algorithm by Gormley and Murphy (2008), while achieving competitive statistical efficiency.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.