Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Risk-Averse $ω$-regular Markov Decision Process Control (1603.06716v2)

Published 22 Mar 2016 in cs.SY, cs.LO, and cs.RO

Abstract: Many control problems in environments that can be modeled as Markov decision processes (MDPs) concern infinite-time horizon specifications. The classical aim in this context is to compute a control policy that maximizes the probability of satisfying the specification. In many scenarios, there is however a non-zero probability of failure in every step of the system's execution. For infinite-time horizon specifications, this implies that the specification is violated with probability 1 in the long run no matter what policy is chosen, which prevents previous policy computation methods from being useful in these scenarios. In this paper, we introduce a new optimization criterion for MDP policies that captures the task of working towards the satisfaction of some infinite-time horizon $\omega$-regular specification. The new criterion is applicable to MDPs in which the violation of the specification cannot be avoided in the long run. We give an algorithm to compute policies that are optimal in this criterion and show that it captures the ideas of optimism and risk-averseness in MDP control: while the computed policies are optimistic in that a MDP run enters a failure state relatively late, they are risk-averse by always maximizing the probability to reach their respective next goal state. We give results on two robot control scenarios to validate the usability of risk-averse MDP policies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.