Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Executable Semantic Parsers for Natural Language Understanding (1603.06677v1)

Published 22 Mar 2016 in cs.CL and cs.AI

Abstract: For building question answering systems and natural language interfaces, semantic parsing has emerged as an important and powerful paradigm. Semantic parsers map natural language into logical forms, the classic representation for many important linguistic phenomena. The modern twist is that we are interested in learning semantic parsers from data, which introduces a new layer of statistical and computational issues. This article lays out the components of a statistical semantic parser, highlighting the key challenges. We will see that semantic parsing is a rich fusion of the logical and the statistical world, and that this fusion will play an integral role in the future of natural language understanding systems.

Citations (130)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)