Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enriching Ontologies with Encyclopedic Background Knowledge for Document Indexing (1603.06494v1)

Published 21 Mar 2016 in cs.DL and cs.IR

Abstract: The rapidly increasing number of scientific documents available publicly on the Internet creates the challenge of efficiently organizing and indexing these documents. Due to the time consuming and tedious nature of manual classification and indexing, there is a need for better methods to automate this process. This thesis proposes an approach which leverages encyclopedic background knowledge for enriching domain-specific ontologies with textual and structural information about the semantic vicinity of the ontologies' concepts. The proposed approach aims to exploit this information for improving both ontology-based methods for classifying and indexing documents and methods based on supervised machine learning.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)