Papers
Topics
Authors
Recent
2000 character limit reached

Frankenstein: Learning Deep Face Representations using Small Data (1603.06470v3)

Published 21 Mar 2016 in cs.CV

Abstract: Deep convolutional neural networks have recently proven extremely effective for difficult face recognition problems in uncontrolled settings. To train such networks, very large training sets are needed with millions of labeled images. For some applications, such as near-infrared (NIR) face recognition, such large training datasets are not publicly available and difficult to collect. In this work, we propose a method to generate very large training datasets of synthetic images by compositing real face images in a given dataset. We show that this method enables to learn models from as few as 10,000 training images, which perform on par with models trained from 500,000 images. Using our approach we also obtain state-of-the-art results on the CASIA NIR-VIS2.0 heterogeneous face recognition dataset.

Citations (121)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.