Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Automated Correction for Syntax Errors in Programming Assignments using Recurrent Neural Networks (1603.06129v1)

Published 19 Mar 2016 in cs.PL, cs.AI, cs.LG, and cs.SE

Abstract: We present a method for automatically generating repair feedback for syntax errors for introductory programming problems. Syntax errors constitute one of the largest classes of errors (34%) in our dataset of student submissions obtained from a MOOC course on edX. The previous techniques for generating automated feed- back on programming assignments have focused on functional correctness and style considerations of student programs. These techniques analyze the program AST of the program and then perform some dynamic and symbolic analyses to compute repair feedback. Unfortunately, it is not possible to generate ASTs for student pro- grams with syntax errors and therefore the previous feedback techniques are not applicable in repairing syntax errors. We present a technique for providing feedback on syntax errors that uses Recurrent neural networks (RNNs) to model syntactically valid token sequences. Our approach is inspired from the recent work on learning LLMs from Big Code (large code corpus). For a given programming assignment, we first learn an RNN to model all valid token sequences using the set of syntactically correct student submissions. Then, for a student submission with syntax errors, we query the learnt RNN model with the prefix to- ken sequence to predict token sequences that can fix the error by either replacing or inserting the predicted token sequence at the error location. We evaluate our technique on over 14, 000 student submissions with syntax errors. Our technique can completely re- pair 31.69% (4501/14203) of submissions with syntax errors and in addition partially correct 6.39% (908/14203) of the submissions.

Citations (114)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.