Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Survey of Stealth Malware: Attacks, Mitigation Measures, and Steps Toward Autonomous Open World Solutions (1603.06028v2)

Published 19 Mar 2016 in cs.CR and cs.CV

Abstract: As our professional, social, and financial existences become increasingly digitized and as our government, healthcare, and military infrastructures rely more on computer technologies, they present larger and more lucrative targets for malware. Stealth malware in particular poses an increased threat because it is specifically designed to evade detection mechanisms, spreading dormant, in the wild for extended periods of time, gathering sensitive information or positioning itself for a high-impact zero-day attack. Policing the growing attack surface requires the development of efficient anti-malware solutions with improved generalization to detect novel types of malware and resolve these occurrences with as little burden on human experts as possible. In this paper, we survey malicious stealth technologies as well as existing solutions for detecting and categorizing these countermeasures autonomously. While machine learning offers promising potential for increasingly autonomous solutions with improved generalization to new malware types, both at the network level and at the host level, our findings suggest that several flawed assumptions inherent to most recognition algorithms prevent a direct mapping between the stealth malware recognition problem and a machine learning solution. The most notable of these flawed assumptions is the closed world assumption: that no sample belonging to a class outside of a static training set will appear at query time. We present a formalized adaptive open world framework for stealth malware recognition and relate it mathematically to research from other machine learning domains.

Citations (150)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.