Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parameterized vertex deletion problems for hereditary graph classes with a block property (1603.05945v1)

Published 18 Mar 2016 in cs.DS

Abstract: For a class of graphs $\mathcal{P}$, the Bounded $\mathcal{P}$-Block Vertex Deletion problem asks, given a graph $G$ on $n$ vertices and positive integers $k$ and $d$, whether there is a set $S$ of at most $k$ vertices such that each block of $G-S$ has at most $d$ vertices and is in $\mathcal{P}$. We show that when $\mathcal{P}$ satisfies a natural hereditary property and is recognizable in polynomial time, Bounded $\mathcal{P}$-Block Vertex Deletion can be solved in time $2{O(k \log d)}n{O(1)}$. When $\mathcal{P}$ contains all split graphs, we show that this running time is essentially optimal unless the Exponential Time Hypothesis fails. On the other hand, if $\mathcal{P}$ consists of only complete graphs, or only cycle graphs and $K_2$, then Bounded $\mathcal{P}$-Block Vertex Deletion admits a $c{k}n{O(1)}$-time algorithm for some constant $c$ independent of $d$. We also show that Bounded $\mathcal{P}$-Block Vertex Deletion admits a kernel with $O(k2 d7)$ vertices.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.