Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication (1603.05627v1)

Published 17 Mar 2016 in cs.DC

Abstract: We propose a fine-grained hypergraph model for sparse matrix-matrix multiplication (SpGEMM), a key computational kernel in scientific computing and data analysis whose performance is often communication bound. This model correctly describes both the interprocessor communication volume along a critical path in a parallel computation and also the volume of data moving through the memory hierarchy in a sequential computation. We show that identifying a communication-optimal algorithm for particular input matrices is equivalent to solving a hypergraph partitioning problem. Our approach is sparsity dependent, meaning that we seek the best algorithm for the given input matrices. In addition to our (3D) fine-grained model, we also propose coarse-grained 1D and 2D models that correspond to simpler SpGEMM algorithms. We explore the relations between our models theoretically, and we study their performance experimentally in the context of three applications that use SpGEMM as a key computation. For each application, we find that at least one coarse-grained model is as communication efficient as the fine-grained model. We also observe that different applications have affinities for different algorithms. Our results demonstrate that hypergraphs are an accurate model for reasoning about the communication costs of SpGEMM as well as a practical tool for exploring the SpGEMM algorithm design space.

Citations (49)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.