Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convergence of a Newton algorithm for semi-discrete optimal transport (1603.05579v2)

Published 17 Mar 2016 in math.NA, cs.CG, and math.AP

Abstract: Many problems in geometric optics or convex geometry can be recast as optimal transport problems: this includes the far-field reflector problem, Alexandrov's curvature prescription problem, etc. A popular way to solve these problems numerically is to assume that the source probability measure is absolutely continuous while the target measure is finitely supported. We refer to this setting as semi-discrete optimal transport. Among the several algorithms proposed to solve semi-discrete optimal transport problems, one currently needs to choose between algorithms that are slow but come with a convergence speed analysis (e.g. Oliker-Prussner) or algorithms that are much faster in practice but which come with no convergence guarantees Algorithms of the first kind rely on coordinate-wise increments and the number of iterations required to reach the solution up to an error of $\epsilon$ is of order $N3/\epsilon$, where $N$ is the number of Dirac masses in the target measure. On the other hand, algorithms of the second kind typically rely on the formulation of the semi-discrete optimal transport problem as an unconstrained convex optimization problem which is solved using a Newton or quasi-Newton method. The purpose of this article is to bridge this gap between theory and practice by introducing a damped Newton's algorithm which is experimentally efficient and by proving the global convergence of this algorithm with optimal rates. The main assumptions is that the cost function satisfies a condition that appears in the regularity theory for optimal transport (the Ma-Trudinger-Wang condition) and that the support of the source density is connected in a quantitative way (it must satisfy a weighted Poincar\'e-Wirtinger inequality).

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube