Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Optimization in Dynamic Environments: Improved Regret Rates for Strongly Convex Problems (1603.04954v1)

Published 16 Mar 2016 in cs.LG and math.OC

Abstract: In this paper, we address tracking of a time-varying parameter with unknown dynamics. We formalize the problem as an instance of online optimization in a dynamic setting. Using online gradient descent, we propose a method that sequentially predicts the value of the parameter and in turn suffers a loss. The objective is to minimize the accumulation of losses over the time horizon, a notion that is termed dynamic regret. While existing methods focus on convex loss functions, we consider strongly convex functions so as to provide better guarantees of performance. We derive a regret bound that captures the path-length of the time-varying parameter, defined in terms of the distance between its consecutive values. In other words, the bound represents the natural connection of tracking quality to the rate of change of the parameter. We provide numerical experiments to complement our theoretical findings.

Citations (144)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.