Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Boundary Control of Coupled Reaction-Advection-Diffusion Systems with Spatially-Varying Coefficients (1603.04914v1)

Published 15 Mar 2016 in math.OC and cs.SY

Abstract: Recently, the problem of boundary stabilization for unstable linear constant-coefficient coupled reaction-diffusion systems was solved by means of the backstepping method. The extension of this result to systems with advection terms and spatially-varying coefficients is challenging due to complex boundary conditions that appear in the equations verified by the control kernels. In this paper we address this issue by showing that these equations are essentially equivalent to those verified by the control kernels for first-order hyperbolic coupled systems, which were recently found to be well-posed. The result therefore applies in this case, allowing us to prove H1 stability for the closed-loop system. It also shows an interesting connection between backstepping kernels for coupled parabolic and hyperbolic problems.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.