First Person Action-Object Detection with EgoNet (1603.04908v3)
Abstract: Unlike traditional third-person cameras mounted on robots, a first-person camera, captures a person's visual sensorimotor object interactions from up close. In this paper, we study the tight interplay between our momentary visual attention and motor action with objects from a first-person camera. We propose a concept of action-objects---the objects that capture person's conscious visual (watching a TV) or tactile (taking a cup) interactions. Action-objects may be task-dependent but since many tasks share common person-object spatial configurations, action-objects exhibit a characteristic 3D spatial distance and orientation with respect to the person. We design a predictive model that detects action-objects using EgoNet, a joint two-stream network that holistically integrates visual appearance (RGB) and 3D spatial layout (depth and height) cues to predict per-pixel likelihood of action-objects. Our network also incorporates a first-person coordinate embedding, which is designed to learn a spatial distribution of the action-objects in the first-person data. We demonstrate EgoNet's predictive power, by showing that it consistently outperforms previous baseline approaches. Furthermore, EgoNet also exhibits a strong generalization ability, i.e., it predicts semantically meaningful objects in novel first-person datasets. Our method's ability to effectively detect action-objects could be used to improve robots' understanding of human-object interactions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.