Papers
Topics
Authors
Recent
2000 character limit reached

Robust Machine Learning for Encrypted Traffic Classification (1603.04865v6)

Published 15 Mar 2016 in cs.CR

Abstract: Desktops and laptops can be maliciously exploited to violate privacy. In this paper, we consider the daily battle between the passive attacker who is targeting a specific user against a user that may be adversarial opponent. In this scenario, while the attacker tries to choose the best vector attack by surreptitiously monitoring the victims encrypted network traffic in order to identify users parameters such as the Operating System (OS), browser and apps. The user may use tools such as a Virtual Private Network (VPN) or even change protocols parameters to protect his/her privacy. We provide a large dataset of more than 20,000 examples for this task. We run a comprehensive set of experiments, that achieves high (above 85) classification accuracy, robustness and resilience to changes of features as a function of different network conditions at test time. We also show the effect of a small training set on the accuracy.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.