Papers
Topics
Authors
Recent
2000 character limit reached

On the exact recovery of sparse signals via conic relaxations (1603.04572v1)

Published 15 Mar 2016 in stat.ML and math.OC

Abstract: In this note we compare two recently proposed semidefinite relaxations for the sparse linear regression problem by Pilanci, Wainwright and El Ghaoui (Sparse learning via boolean relaxations, 2015) and Dong, Chen and Linderoth (Relaxation vs. Regularization A conic optimization perspective of statistical variable selection, 2015). We focus on the cardinality constrained formulation, and prove that the relaxation proposed by Dong, etc. is theoretically no weaker than the one proposed by Pilanci, etc. Therefore any sufficient condition of exact recovery derived by Pilanci can be readily applied to the other relaxation, including their results on high probability recovery for Gaussian ensemble. Finally we provide empirical evidence that the relaxation by Dong, etc. requires much fewer observations to guarantee the recovery of true support.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.