Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spoofing Detection Goes Noisy: An Analysis of Synthetic Speech Detection in the Presence of Additive Noise (1603.03947v3)

Published 12 Mar 2016 in cs.SD

Abstract: Automatic speaker verification (ASV) technology is recently finding its way to end-user applications for secure access to personal data, smart services or physical facilities. Similar to other biometric technologies, speaker verification is vulnerable to spoofing attacks where an attacker masquerades as a particular target speaker via impersonation, replay, text-to-speech (TTS) or voice conversion (VC) techniques to gain illegitimate access to the system. We focus on TTS and VC that represent the most flexible, high-end spoofing attacks. Most of the prior studies on synthesized or converted speech detection report their findings using high-quality clean recordings. Meanwhile, the performance of spoofing detectors in the presence of additive noise, an important consideration in practical ASV implementations, remains largely unknown. To this end, we analyze the suitability of state-of-the-art synthetic speech detectors under additive noise with a special focus on front-end features. Our comparison includes eight acoustic feature sets, five related to spectral magnitude and three to spectral phase information. Our extensive experiments on ASVSpoof 2015 corpus reveal several important findings. Firstly, all the countermeasures break down even at relatively high signal-to-noise ratios (SNRs) and fail to generalize to noisy conditions. Secondly, speech enhancement is not found helpful. Thirdly, GMM back-end generally outperforms the more involved i-vector back-end. Fourthly, concerning the compared features, the Mel-frequency cepstral coefficients (MFCCs) and subband spectral centroid magnitude coefficients (SCMCs) perform the best on average though the winner method depends on SNR and noise type. Finally, a study with two score fusion strategies shows that combining different feature based systems improves recognition accuracy for known and unknown attacks in both clean and noisy conditions.

Citations (58)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.