Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Part-of-Speech Tagging for Historical English (1603.03144v2)

Published 10 Mar 2016 in cs.CL and cs.DL

Abstract: As more historical texts are digitized, there is interest in applying natural language processing tools to these archives. However, the performance of these tools is often unsatisfactory, due to language change and genre differences. Spelling normalization heuristics are the dominant solution for dealing with historical texts, but this approach fails to account for changes in usage and vocabulary. In this empirical paper, we assess the capability of domain adaptation techniques to cope with historical texts, focusing on the classic benchmark task of part-of-speech tagging. We evaluate several domain adaptation methods on the task of tagging Early Modern English and Modern British English texts in the Penn Corpora of Historical English. We demonstrate that the Feature Embedding method for unsupervised domain adaptation outperforms word embeddings and Brown clusters, showing the importance of embedding the entire feature space, rather than just individual words. Feature Embeddings also give better performance than spelling normalization, but the combination of the two methods is better still, yielding a 5% raw improvement in tagging accuracy on Early Modern English texts.

Citations (60)

Summary

We haven't generated a summary for this paper yet.