Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Part-of-Speech Tagging for Historical English (1603.03144v2)

Published 10 Mar 2016 in cs.CL and cs.DL

Abstract: As more historical texts are digitized, there is interest in applying natural language processing tools to these archives. However, the performance of these tools is often unsatisfactory, due to language change and genre differences. Spelling normalization heuristics are the dominant solution for dealing with historical texts, but this approach fails to account for changes in usage and vocabulary. In this empirical paper, we assess the capability of domain adaptation techniques to cope with historical texts, focusing on the classic benchmark task of part-of-speech tagging. We evaluate several domain adaptation methods on the task of tagging Early Modern English and Modern British English texts in the Penn Corpora of Historical English. We demonstrate that the Feature Embedding method for unsupervised domain adaptation outperforms word embeddings and Brown clusters, showing the importance of embedding the entire feature space, rather than just individual words. Feature Embeddings also give better performance than spelling normalization, but the combination of the two methods is better still, yielding a 5% raw improvement in tagging accuracy on Early Modern English texts.

Citations (60)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.