Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

LDA Lattices Without Dithering Achieve Capacity on the Gaussian Channel (1603.02863v1)

Published 9 Mar 2016 in cs.IT and math.IT

Abstract: This paper deals with Low-Density Construction-A (LDA) lattices, which are obtained via Construction A from non-binary Low-Density Parity-Check codes. More precisely, a proof is provided that Voronoi constellations of LDA lattices achieve the capacity of the AWGN channel under lattice encoding and decoding. This is obtained after showing the same result for more general Construction-A lattice constellations. The theoretical analysis is carried out in a way that allows to describe how the prime number underlying Construction A behaves as a function of the lattice dimension. Moreover, no dithering is required in the transmission scheme, simplifying some previous solutions of the problem. Remarkably, capacity is achievable with LDA lattice codes whose parity-check matrices have constant row and column Hamming weights. Some expansion properties of random bipartite graphs constitute an extremely important tool for dealing with sparse matrices and allow to find a lower bound of the minimum Euclidean distance of LDA lattices in our ensemble.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.