Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Faster learning of deep stacked autoencoders on multi-core systems using synchronized layer-wise pre-training (1603.02836v1)

Published 9 Mar 2016 in cs.LG

Abstract: Deep neural networks are capable of modelling highly non-linear functions by capturing different levels of abstraction of data hierarchically. While training deep networks, first the system is initialized near a good optimum by greedy layer-wise unsupervised pre-training. However, with burgeoning data and increasing dimensions of the architecture, the time complexity of this approach becomes enormous. Also, greedy pre-training of the layers often turns detrimental by over-training a layer causing it to lose harmony with the rest of the network. In this paper a synchronized parallel algorithm for pre-training deep networks on multi-core machines has been proposed. Different layers are trained by parallel threads running on different cores with regular synchronization. Thus the pre-training process becomes faster and chances of over-training are reduced. This is experimentally validated using a stacked autoencoder for dimensionality reduction of MNIST handwritten digit database. The proposed algorithm achieved 26\% speed-up compared to greedy layer-wise pre-training for achieving the same reconstruction accuracy substantiating its potential as an alternative.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.