Papers
Topics
Authors
Recent
2000 character limit reached

Implicit Discourse Relation Classification via Multi-Task Neural Networks (1603.02776v1)

Published 9 Mar 2016 in cs.CL, cs.AI, and cs.NE

Abstract: Without discourse connectives, classifying implicit discourse relations is a challenging task and a bottleneck for building a practical discourse parser. Previous research usually makes use of one kind of discourse framework such as PDTB or RST to improve the classification performance on discourse relations. Actually, under different discourse annotation frameworks, there exist multiple corpora which have internal connections. To exploit the combination of different discourse corpora, we design related discourse classification tasks specific to a corpus, and propose a novel Convolutional Neural Network embedded multi-task learning system to synthesize these tasks by learning both unique and shared representations for each task. The experimental results on the PDTB implicit discourse relation classification task demonstrate that our model achieves significant gains over baseline systems.

Citations (114)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.